Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We establish sharp nonlinear stability results for fronts that describe the creation of a periodic pattern through the invasion of an unstable state. The fronts we consider are critical, in the sense that they are expected to mediate pattern selection from compactly supported or steep initial data. We focus on pulled fronts, that is, on fronts whose propagation speed is determined by the linearization about the unstable state in the leading edge, only. We present our analysis in the specific setting of the FitzHugh–Nagumo system, where pattern-forming uniformly translating fronts have recently been constructed rigorously [Carter and Scheel (2018)], but our methods can be used to establish nonlinear stability of pulled pattern-forming fronts in general reaction-diffusion systems. This is the first stability result for critical pattern-selecting fronts and provides a rigorous foundation for heuristic, universal wave number selection laws in growth processes based on a marginal stability conjecture. The main technical challenge is to describe the interaction between two separate modes of marginal stability, one associated with the spreading process in the leading edge, and one associated with the pattern in the wake. We develop tools based on far-field/core decompositions to characterize, and eventually control, the interaction between these two different types of diffusive modes. Linear decay rates are insufficient to close a nonlinear stability argument and we therefore need a sharper description of the relaxation in the wake of the front using a phase modulation ansatz. We control regularity in the resulting quasilinear equation for the modulated perturbation using nonlinear damping estimates.more » « lessFree, publicly-accessible full text available July 27, 2026
-
Abstract We analyze spatial spreading in a population model with logistic growth and chemorepulsion. In a parameter range of short-range chemo-diffusion, we use geometric singular perturbation theory and functional-analytic farfield-core decompositions to identify spreading speeds with marginally stable front profiles. In particular, we identify a sharp boundary between between linearly determined, pulled propagation, and nonlinearly determined, pushed propagation, induced by the chemorepulsion. The results are motivated by recent work on singular limits in this regime using PDE methods (Grietteet al2023J. Funct. Anal.285110115).more » « lessFree, publicly-accessible full text available January 21, 2026
-
Abstract Motivated by the impact of worsening climate conditions on vegetation patches, we study dynamic instabilities in an idealised Ginzburg–Landau model. Our main results predict time instances of sudden drops in wavenumber and the resulting target states. The changes in wavenumber correspond to the annihilation of individual vegetation patches when resources are scarce and cannot support the original number of patches. Drops happen well after the primary pattern has destabilised at the Eckhaus boundary and key to distinguishing between the disappearance of 1,2 or more patches during the drop are complex spatio-temporal resonances in the linearisation at the unstable pattern. We support our results with numerical simulations and expect our results to be conceptually applicable universally near the Eckhaus boundary, in particular in more realistic models.more » « less
-
We establish selection of critical pulled fronts in invasion processes as predicted by the marginal stability conjecture. Our result shows convergence to a pulled front with a logarithmic shift for open sets of steep initial data, including one-sided compactly supported initial conditions. We rely on robust, conceptual assumptions, namely existence and marginal spectral stability of a front traveling at the linear spreading speed and demonstrate that the assumptions hold for open classes of spatially extended systems. Previous results relied on comparison principles or probabilistic tools with implied nonopen conditions on initial data and structure of the equation. Technically, we describe the invasion process through the interaction of a Gaussian leading edge with the pulled front in the wake. Key ingredients are sharp linear decay estimates to control errors in the nonlinear matching and corrections from initial data.more » « less
-
Abstract We study transitions from convective to absolute instability near a trivial state in large bounded domains for prototypical model problems in the presence of transport and negative nonlinear feedback. We identify two generic scenarios, depending on the nature of the linear mechanism for instability, which both lead to different, universal bifurcation diagrams. In the first, classical case of a linear branched resonance the transition is hard, that is, small changes in a control parameter lead to a finite-size state. In the second, novel case of an unbranched resonance, the transition is gradual. In both cases, the bifurcation diagram is determined by interaction of the leading edge of an invasion front with upstream boundary conditions. Technically, we analyze this interaction in a heteroclinic gluing bifurcation analysis that uses geometric desingularization of the trivial state.more » « less
An official website of the United States government
